主页 > 创新 > 正文

谷歌医疗心不死,要做AI眼科,用大数据防治糖网病

点评

科技传媒网 科技媒体 2016-12-01 06:15

糖网病是糖尿病一种恐怖的并发症,全称为糖尿病视网膜病变,严重者可能引发失明。近日,科技巨头谷歌也宣布要在该领域有所建树,立志通过AI技术和大数据的支持完

【编者按】糖网病是糖尿病一种恐怖的并发症,全称为糖尿病视网膜病变,严重者可能引发失明。之前亿欧报道过的一家公司就在研发糖网病的大数据算法,希望尽早筛查出糖网病并对其进行治愈。近日,科技巨头谷歌也宣布要在该领域有所建树,立志通过AI技术和大数据的支持完成糖网病的防治。

本文转载于雷锋网,作者sunshine_lady;由亿欧整理,供行业人士参考。

越来越多的糖尿病患者因视网膜病变而致盲,全世界大约有4.15亿的糖尿病患者正面临这一威胁。如果能有效捕捉到视网膜病变的征兆特征,病人是可以通过早期治疗而避免失明。但倘若未能对其作出及时的诊断,错过治疗最佳时机,糖尿病引起的失明将是无法医治的。

但可惜的是,能够诊断出这一病变的专业医生数量也是非常有限的,并不是每位糖尿病患者都能得到专家的及时治疗。为此,谷歌公司相信通过机器学习方法能够帮助医生为病人做出诊断,尤其是那些没有条件接收专业医治的糖尿病患者群体。

若干年前,谷歌研究人员就已开始考虑使用谷歌科技来增强糖尿病视网膜病变的检测过程,并将目光投向当时兴起的由机器学习算法支撑起的计算机视觉技术上。近日,谷歌在《美国医学会杂志》发表题为 “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic RetinoPathy in Retinal Fundus Photographs”的论文,正是谷歌研究人员提出的一种基于深度学习的算法,该算法能够在视网膜造影中对糖尿病视网膜病变的迹象做出解释,帮助医生克服资源短缺资困难,为更多的病人做出更专业的诊断。

通常,糖尿病人眼部检查过程是由医院专家分析病人的眼底造影图像,并对患病与否以及严重程度做出评估。其中,患病严重程度的评估是通过检查眼底病变(如下图)的形式来判定的,比如微动脉瘤、眼底出血、硬性渗出等,主要参考出血、液体渗出等病况。能对影相中的信息做出解释,需要很高的专业功底和临床经验。如果要为世界各地每位有失明危险的糖尿病患者做出诊断,医生的数量是远远不够的。

视网膜眼底拍片

糖尿病视网膜病变患者视网膜基底造影示例。左侧图片采自眼部正常的糖尿病患者(A);右侧图片采自患有视网膜病变的糖尿病患者(B),图中显示出该病人眼底有出血现象(一些小红点)。(图片来自Google Research Blog)

通过与美国及印度医生的密切接触,谷歌研究人员建立了一个有12.8万幅图片组成的数据集,每张图片都记录了 3-7 名眼科医师的评估结果。与该团队合作的眼科医师一共54名。这一数据集被用来训练深度神经网络从而检测可参考的糖尿病视网膜病变图片。

为检验算法的性能,该团队使用两个独立的临床验证数据集共包括 1.2 万幅图片进行测试。每幅测试图片都进行标记审核。评审专家组由7-8名通过职业资格考核的美国眼科专家组成,通过多数投票通过的方式进行判决。同时保证结果与训练集所参考的 54名眼科医师团开出的诊断结果一致。算法生成的检测结果与眼科专家诊断结果参见下图,共对比了9963幅临床有效集合内的图片。

糖网病诊断正确率对比

黑色曲线表示算法性能,彩色点表示八位眼科专家对糖尿病视网膜病变(轻度或重度糖尿病视网膜病变,或由糖尿病引起的视网膜黄斑水肿)的临床诊断结果。实验数据为9963幅有效图集。图中黑色菱形为外科手术操作点,其对应于算法在高敏感性和高特异性下的操作点。

结果表明,谷歌的算法诊断性能可以与眼科专家诊断结果相媲美。比如上图描述的有效集合,算法获得0.95的F分数(结合敏感性和特异性指标,取max = 1),相比八位眼科专家的中位数0.91分,该算法略胜一筹。图片来自Google Research Blog

这些结果诚然令人激动不已,但是仍有大量工作需要完善。

首先,尽管谷歌传统的算法质量评估系统很全面,但是与视网膜专家交流后发现,在定义质量性能方面,还需要更严格的参考标准。

其次,谷歌在论文中对2D眼底造影技术的解释仅仅是糖尿病视网膜病变诊断中众多步骤的一部分。

在某些情况下,医生使用的3D图像技术,即光学相干断层扫描(OCT),能够更为详细地对不同切片上的眼部细节进行检查。谷歌DeepMind的研究人员已经开始将机器学习应用于这些3D图像模式。不久的将来,这两种互补理论可能会共同援助医生分析眼部疾病的宽频谱。

针对糖尿病视网膜病变的自适应高精度理论还有着很大潜力,不仅能够帮助医生评估更多的病人,而且能为需要专家诊断的人群提供快速通道。

未来,Google将联手医生和科学家将该方法的整个过程推广至全球。为保证利益最大化,谷歌将完善该研究理论并应用于临床工作流系统。目前,谷歌正与FDA及其他监管部门合作,进一步为临床研究进行评估。由于近期深度学习进展迅猛,谷歌也期待能够研究出更加令人振奋的成果。这同时也更好的证明机器学习在解决医疗图像处理方面表现的非常出色。

原文链接:http://www.itmsc.cn/archives/view-137529-1.html
科技传媒网—致力于推动创新科技发展,专注科技新闻传播的新媒体平台。更多精彩内容请关注微信公众号:gdkjcm

(责任编辑:夏喧)

1.科技传媒网遵循行业规范,任何转载的稿件都会明确标注作者和来源;

2.科技传媒网的原创文章,请转载时务必注明文章作者和"来源:科技传媒网",不尊重原创的行为,科技传媒网都将保留追究责任权益;

3.作者投稿可能会经科技传媒网编辑修改或补充。

阅读延展
更多科技新闻 相关智库科技新闻阅读
科技传媒网科技要闻

天津高新区众创空间数量已达28家

科技传媒网天津12月2日消息 科技新闻栏目记者日前从天津高新区获悉,天津高新区近年来在推动众创空间建设上取得了非常不错的成绩。截止目前,天津高新区已经成功建成28家众创空间

科技传媒网创客必读科技新闻

民生银行签订近20家P2P合作商,仅3家真正上线正常运营

在互金领域,国家层面的监管日趋严格。P2P网贷平台寻求资金存管成为主流,但是另一方面,银行的态度却变得日趋谨慎。此前,很多网贷平台所谓的“签订协议”其实

科技传媒网每日精选阅读

“罗一笑”在东莞和深圳有三套房 为何仍向社会求助?

科技新闻栏目记者获悉,今日朋友圈被一篇25日的文章《罗一笑,你给我站住》刷屏。文章作者罗尔曾是某家杂志的主编,今年1月杂志停刊,9月其5岁多的女儿笑笑查出来了白血病,住进了深圳市儿童医院。

科技传媒网科技专题
2016年“松湖杯”创新创业大赛-科技传媒网
关于科技传媒网

科技传媒网(www.itmsc.cn),由广东省创新科技传媒服务中心主办,以社会需求为导向,搜集关于科技最新最全的时事动态。

微信
微博
RSS